Advanced Biology

Cell and Membrane Structure and Function

Learning Objectives:

- To Study cells, biologists use microscopes and tools of biochemistry.
- Eukaryotic cells have internal membranes that compartmentalize their functions.
- Cellular membranes are fluid mosaics of lipids and proteins.
- Passive transport is diffusion of a substance across a membrane with no energy investment.
- Active transport uses energy to move solutes against their gradients. Bulk transport across the membrane occurs by exocytosis and endocytosis.

Major Terms:			
Apoptpsos	Lysosome	Vacuole	Osmosis
Cell	Matrix	Vesicle	Osmotic pressure
Cell theory	Micro tubule	Active transport	Phagocytosis
Cell wall	Mitochondrion	Adhesion junction	Phospholipid bilayer
Central vacuole	Nuclear envelope	Carrier protein	Pinocytosis
Centriole	Nuclear pore	Concentration	Plasmodesmata
Chloroplast	Nucleolus	gradient	Plasmolysis
Chromatin	Nucleoplasm	Diffusion	Receptor protein
Chromosome	Nucleus	Endocytosis	Sodium-potassium
Cilia	Organelle	Exocytosis	pump
Cristae	Peroxisone	Facilitated transport	Solute
Cytoplasm	Plasma membrane	Fluid-mosaic model	Solution
Cytoskeleton	Prokaryotic	Gap junction	Solvent
ER	Ribosome	Glycolipid	Tight junction
Eukaryotic	Stroma	Glycoprotein	Turgor pressure
Flagellum	Surface-area-to-	Hypertonic	
Golgi apparatus	volume ratio	Hypotonic	
Granum	Thylakoid	Isotonic	

Read: Chapters 4 and 5

Lecture:

- I. Basic Microscopy
 - A. _____: The degree of enlargement in size.
 - B. _____: The minimum distance allowing the distinction of two objects.
 - C. Light Microscopy
 - 1. Resolution to $\sim 0.2 \mu m$, Magnification _____
 - 2. Bright field (may be stained or unstained, fixed or live specimens).
 - 3. Phase Contrast—usually live specimens.
 - 4. Darkfield and Darkfield Interference especially useful to visualize chromosomes, various organelles
 - D. Electron Microscopy:
 - Resolution to ~ 0.0001μm, Magnification ______. Uses beams of electrons in place of beams of visible light. Specimens are killed, fixed with electron-dense heavy metal salts. The specimen may be sectioned or freeze-fractured.
 - 2. Transmission Electron Microscopy
 - 3. Scanning Electron Microscopy Provides a 3-D view

II. Cell Theory - A, B, C's

- A. ____living organisms are composed of cells.
- B. ______ the cell is the structural and functional unit of all organisms.

C. _____come only from pre-existing cells.

III. Cells are small - needs a large ______ to rid of wastes

IV. Differences between Prokaryotes and Eukaryotes

	Prokaryotes	Eukaryotes
Cell Wall		
	Peptidoglycan or Protein	Cellulose or Chitin
Nucleus		
		Histone Proteins, DNA + Protein make Chromatin
Plasma Membrane		
Cytoskeleton		
Membrane Bound Organelles		
		Minimizes competing interactions and increases SA
Mitochondria /Chloroplasts		
Ribosomes		
Size		

V. Differences between Plant and Animal Cells

	Plant Cells	Animal Cells
Cell Wall		
Plasma		
membrane		
DI 11 (C'1)		
Flagella/Cilia		
D1 (
Phagocytic		
Activity		
$C \rightarrow 1$		
Centrioles		
Chloroplasta		
Cinoropiasts		

VI. Cellular Organelles

- A. Nucleus

 - 3. Genetic information storage, Location of the Chromosomes

B. Nucleolus

- 1. Found in Eukaryotes
- 2. Chromatin and RNA
- 3. Dark spot in nucleus where

C. Ribosomes

- 1. Found in all cells Different structure in Pro and Eukaryotes
- 2. Made of ______. In Two parts

- 3. _____(translation)
- D. Endoplasmic Reticulum
 - 1. Eukarvotes
 - 2.
 - 3. Rough ER
 - a. Studded with _____
 - b.
 - 4. Smooth ER
 - a.
 - b. Carbohydrate synthesis, lipid synthesis, chemical conversions, vesicle formation
- E. Golgi Apparatus (Golgi Bodies, Golgi Complex)
 - 1. Eukarvotes
 - 2. 3. Formation of vesicles, processing, packaging, and delivery of modified proteins
- F. Lysosome
 - 1. Animal cells
 - 2. Membranous sac that contains _____
 - 3. Intracellular Digestion,
- G. Microbodies
 - 1. Eukaryotes
 - 2. Membraneous sac that contains ______.
 - 3. Two types
 - - a. _____ _____ b. Glyoxysome
- H. Vacuoles/Vesicles
 - 1. Eukaryotes
 - 2. _____
 - 3. Storage of
 - _____ pigments, intracellular digestion
 - 4. Large Central Vacuole of water is common characteristic in plant cells
- I. Mitochondria
 - 1. Eukaryotes
 - 2. Two membranes

- a. (inner membrane) responsible for energy production
- b. Outer membrane
- c. ______ is the solution inside, has enzymes 3. Has some DNA
- 4. Organelle is inherited from
- 5. Produces _____ (cellular energy) through Cellular Respiration

J. Chloroplast

- 1. _____ 2. Two membranes
 - a. Inner membranes form ______ (discs), stack of thylakoids is a granna, Chlorophylls bounded on membrane
 - b. _____is liquid surrounding

3. _____

- K. Cytoskeleton
 - 1. Eukaryotes
 - 2. Microtublules, microfilaments, actin and intermediate filaments
 - 3. _____
- L. Centrioles
 - 1. Animal cells
 - 2. 9+0 microtubule pattern
 - 3. Organization of microtubules, miotic spindle
- M. Cilia
 - 1. Eukaryotes
 - 2. 9+2 pattern, small hairs
- 3. N. Flagella
 - 1. All, rare only a few in plants
 - 2. 9+2 microtubule pattern in eukaryotes, long whip
 - 3. _____
- O. Cell Wall
 - 1.
 - 2. Bacterial: Peptidoglycan
 - 3. Plant: Carbohydrate (cellulose)
 - 4.

P. Plasma Membrane

- 1. All cells
- 2. Phospholipids with two _______ fatty acid chains within the bilayer. Phosphate head is _______ and faces outer or inner environment.

- 3. Lipid Bilayer: Proteins on one side or embedded within.
- 4. Boundary, selective transport of molecules or ions into or out of the cell
- VII. The Fluid-Mosaic Model
 - A. ______ are hydrophilic and face both the outside and the inside of the cell.
 - B. The ______ are hydrophobic and form the interior of the bilayer.C. Peripheral proteins are loosely bound to the surface.

 - D. Intergral proteins are those embedded in the membrane. Can be:

- 1. On inner may be anchored to the cell cytoskeleton
- 2. outer
- 3. transmembrane. (through)
 - a. The hydrophopic portions of the protein are within the membrane while the hydrophilic portions are facing either outside or inside the cell (Structure Determines Function)
 - b. The outer and transmembrane proteins are often ______(have carbohydrate parts on them).
 - c. The glycosylation is often related to cell-cell recognition (immune response) and to cell-cell communication.
- E. Functions of Proteins

1.	 	_
2.		_
3.		_
4.		
5.		

VIII. Cellular Transport Mechanisms: membrane is semi-, differentially, or selectively permeable A. Passive Transport: No Energy Required

- 1. _____
 - a. No energy, Toward _____
 - b. Water, lipid soluble molecules (non-polar), O₂
- 2. Osmosis -
- 3. ____
- a. Need a specific carrier or channel, An example are aquaporins
- b. Toward ______ concentration
- c. Non-polar amino acids, glucose, water
- d. Channel Proteins allow the free passage of certain molecules or ions. Cystic fibrosis is caused by a defective Cl- channel.
- e. Carrier proteins are selective.
- 4. These processes are _____.

B. Active Transport: ______ (ATP: free energy)

- 1. Need a carrier or pump
- 2. ______the concentration gradient: towards higher concentration
- 3. Polar amino acids, sugars, ions
- 4. Types
 - a. ____: 1 substance transported
 - b. ____: 2 substances transported
 - c. _____: move substances in the same direction
 - d. _____: move substances in the opposite direction
- 5. Active Transport: The Na+/K+ Pump
- 6. _____

- a. Formation of vesicle
- b. From inside going to outside, fusing with plasma membrane
- c. Macromolecules are sent out of cells

7. ____

- a. Formation of vesicle
- b. From outside going to inside, Formation of a vacuole
- c. Types
 - i. ______ cells, cell debris, food
 - ii. _____ Macromolecules
 - iii. _____- water
- IX. Origin of the Mitochondria and Chloroplasts

A. Serial ______hypothesis: Both organelles may have originated as independent prokaryotes and at some point were phagocytized by ancient organisms. They eventually evolved to become endosymbionts.

• Evidence in favor: Mitochondria and Chloroplasts arise only from pre-existing

organelles. Both contain _____, Both are susceptible to DNA-affecting agents that do not affect eukaryotic DNA

B. ______hypothesis: Endocytic vesicles evolved specialized functions. These specialized organelles gave a selective advantage to those organisms possessing them. X. Cell Junctions

- A. _____: Pores lines with proteins that allow movement of materials between animal cells
- **B.**_____: "Clamp" Proteins that seal the borders between cells.
- C.____: fasten adjacent cells together
- **D.**____: Strands of cytoplasm (desmotubules) that extrude through pores

into adjacent plant cells.

Do Practice : Reviewing the chapter pg 81 and 99

Terms: Concentration gradient, Solution, Solute, solvent, Osmotic pressure, Isotonic, Hypotonic, Hypertonic, Equillibrium, Turgor pressure, Plasmolysis, Diffusion, Osmosis