Advanced Biology

Photosynthesis

Learning Objectives:

Photosynthesis converts light energy to the chemical energy of food. The light reactions convert solar energy to the chemical energy of ATP and NADPH. The Calvin Cycle uses ATP and NADPH to convert CO_2 to sugar. Alternative mechanisms of carbon fixation have evolved in hot, arid climates

Major Terms:

ATP synthase	Calvin Cycle	Chlorophyll	Light reaction	Photosynthesis	Visible light
Autotrophic	CAM	Chloroplast	Light Independent	Photosystem	
Bundle Sheath	CO ₂ Fixation	Cyclic electron	Reaction	Pigment	
cells	Carotenoid	pathway	Noncyclic electron	Stomata	
C3 Plant	Chemiosmosis	ETC	Pathway	Stroma	
C4 Plant		Grana	Photons	Thylakoid	

Read: Chapter 7

Lecture:

Photosynthesis

I. Overview

A. Photosynthesis: The process by which ______ (free energy) is converted by

______ (self-feeding) organisms (like green plants) into the _______ of a

carbohydrate.

- B. Light ______ are captured by specialized ______ molecules and excite the
 - _____ of those molecules to high energy states.
- C. An electron transport system transfers the energy from the electrons to ______ that serves as the energy reservoir for molecule biosynthesis.
- D. The energy is then used to produce ______ which acts as long-term storage for the energy.
- E. Photosynthesis is an _____ process where CO2 and H2O are utilized in the production

of sugars and complex carbohydrates, eventually leading to the synthesis of nucleic acids, proteins and lipids.

- F. Cellular respiration, on the other hand is an _____ process.
- G. Overall Reaction

1. $6CO_2+12 H_2O \rightarrow C_6H_{12}O_6+6O_2+6H_2O$

- 2. Water is written on both sides of the equation because the water represents ______ synthesized H₂O.
- 3. The O_2 produced has been traced (using radio-labeled substrates) to water, and <u>NOT</u> the CO_2 that the plant takes in.
- 4. Photosynthesis is a _____ process $-H_2O$ is oxidized and CO_2 is reduced.
- H. Generalized Equation
- II. The Two Major Types of Reactions in Photosynthesis
 - A. Photosynthesis is divided into two reactions: The ______ (consisting of

Photosystem I[PS I] and Photosystem II [PS II]) feeds ATP and NADPH into the

- the Calvin-Bensen Cycle, usually referred to as the ______.

- III. Light Dependent Reaction
 - A. The visible light spectrum consists of light of 380-750 nm in wavelength.

B.	Photosynthetic	pigments	(chlorophylls)	absorb	light at a m	aximum	of about 400	() and 600
----	----------------	----------	----------------	--------	--------------	--------	--------------	---	-----------

() nm.

C. Chlorophylls a and b

1. The head of the chlorophyll is hydrophilic. The hydrophobic tail interacts with thylakoid membrane proteins.

- 2. Absorption Spectrum of Chlorophyll
 - a. Different pigments allow of absorption.
- D. Chloroplasts
 - 1. is the liquid in the central compartment.
 - 2. The stacks contain the individual vesicles.
 - 3. The thylakoids are membrane bound interconnected vesicles that enclose a complete separate compartment — the thylakoid space. The photosensitive pigments are embedded in the thylakoid membrane.
 - 4. All the components of both PS I and PS II are located in close proximity to the

_____ and NADP reductase.

- E. Photosystem II
 - 1. Chlorophylls absorb
 - 2. An absorbs energy and goes into a higher energy state.
 - 3. Electron is then transferred to an
 - 4. To replace the electron that left, an enzyme splits an
 - a. The electrons go to _____
 - b. joins another one and out
 - 5. The excited electron travels through an (ETC) to Photosystem I.
 - 6. Energy from electron is used to pump into Thylakoid space causing an electrochemical gradient.
 - 7. H+ leaves through ______ (produces ATP)
- A. Photosytem I
 - 1. More Light energy the electron.
 - 2. The electron goes to an acceptor and then down another _____
 - 3. It is transmitted to to form
- B. Cyclic Electron Flow
 - 1. Produces
 - 2. Uses photosystem I, but puts the electron back into the original
- C. End Result is the production of and
 - Light+ADP+P+NADP+H2O(ATP+NADPH+O2

The Calvin-Bensen Cycle or _____ IV.

- A. Uses ATP and NADPH to convert ______ into _____
- B. The Calvin Cycle can be Divided into 3 phases
 - 1. Phase 1:______ C is added or "fixed" to beginning molecule (RuBP).
 - 2. Phase 2: _____- electrons are added to modify the molecule
 - 3. Phase 3: _____

V. Adaptations to Carbon Fixation

- A. Plants in have adapted to conditions both in morphology and metabolism.
- B. The stomata are not only the main entry routes for _____, but are also the _____ routes for ____, which the plant must conserve.
- C. plants (standard Calvin cycle) use PS I and PS II to produce ATP and NADPH for further use in the Calvin-Bensen cycle.
- D. plants (carbon is "fixed" into the 4C compound, oxaloacetate).
 - 1. In C4 plants such as ______, leaf structure includes the mesophyll and the bundle sheath cells.

 - a. The bundle sheath cells ______ the leaf vasculature.b. Carbon is fixed into oxaloacetate in the mesophyll cells. Malate is then produced which crosses into the bundle sheath cells via plasmodesmata whereupon CO₂ is released and enters the Calvin cycle.
- E. (Crasulacean Acid Metabolism) plants are water-storing (succulant) plants. They open the stomata

_____, and store the CO₂ as organic _____. During the day, the stomata are

_____ and the CO₂ is released to enter the Calvin-Bensen cycle.

F. Overview

	C3	C4	САМ
Leaves			
Examples			
Examples			
Other			

Review : Do Reviewing the Chapter and Testing Yourself on pgs 128-130