Advanced Biology

Energy

Learning Objectives:

- An organism's metabolism transforms matter and energy, subject to the laws of thermodynamics. -
- The free-energy of a reaction tells us whether the reaction occurs spontaneously. ATP powers cellular work. -
- -
- Most biochemical reactions are redox reactions. -

Major Terms: ADP ATP ATP synthase complex Chemiosmosis		Electron transport system Endergonic reaction Energy Entropy	Exergonic reaction Free energy Metabolism NAD NADP	Oxidation Phosphorylation Product Reactant Reduction	
Read:	Chapter 6	1.5			
<i>Lectur</i> Energy	e: y				
I.	Review				
	A	– all of an org	ganism's chemical reaction	S	
	B		_energy by breaking comp	olex into simple compounds	
	C		energy to build complex	c out of simple compounds	
D. Excess free energy goes to					
II.	E. Insufficient energThermodynamicsA. First Law of Therr	y can cause			
	 Energy only be tra: B. Second Law of The 1. The entrop 	nsformed ermodynamics: y of the universe	it is neither cro	eated nor destroyed, but can	
	2. $reactions.$	entropy	reactions are coupled with	entopy	
III.	Enzymes A. Enzymes are catalytic proteins without which biochemical reactions would be so slow as to make				
IV.	life as we know it ATP	energetically impossible	. Enzymes are critical for r	nost biochemical reactions.	
A.		(ATP): 7	The universal energy storag	ge molecule. The energy is	
B. C.	stored in the form of ATP +H ₂ O How ATP is Utilized:	$\overrightarrow{\text{Pase}} \qquad \overrightarrow{\text{ADP} + \text{Pi} + 7.3}$	kcal/mole		
	1	: Synthesis and	l Degradation		
	2.	: Movement			
	 The inorganic pho phosphorylating or 	Electrochemic sphate (Pi) released from ther molecules in an <u>ende</u>	cal gradients in the <u>exergonic</u> reaction can ergonic process.	n then be used in	

	_					
	E.	Parts				
		1				
		2				
		3				
	F.	Releasing energy				
		1. If one phosphate is removed, results.				
		2. If two phosphates are removed, is the result.				
V.		3. If adenylate cyclase is present, cyclic AMP () is produced. ReDox				
	A. Most biochemical reactions are oxidation-reduction reactions (redox) where electrons are gained by o					
		substance (which is thereby) and lost by another substance (which is thereby				
	R					
	D.					
	C.	During aerobic respiration, the coenzymes NAD+ and FAD electrons (are reduced) and				
		carry the electrons to the located on the cristae. The chain is a stepped-				
		down system — every time an electron is transferred, energy is and made available				
		to produce ATP. During respiration, carbohydrates are oxidized to CO ₂ and water.				
	D. During photosynthesis, high-energy electrons (from waterthe energy for this process is ultimately					
		from solar energy) CO ₂ to carbohydrate. The coenzyme used in photosynthetic				
		cells is NADP,+ isto NADPH. This chain is also a stepped-down system — every				
VI.	A.	time an electron is transferred, energy is and made available to produce ATP. The Electron Transport Chain: found in Mitochondria and Chloroplasts A. In Mitochondria (Aerobic Respiration), the Electron Transport Chain oxidizes substrates to CO ₂ and				
		water.				
	B.	In Chloroplasts (Photosynthesis), the Electron Transport Chain reduces CO ₂ to a carbohydrate.				
	C.	1 The Chemiosmotic Theory				
		a A H+ (proton) gradient is established across the mitochondrial/chloroplast membrane by an H+				
		pump. This electrochemical gradient provides the energy necessary for the phosphorylation of				
		to by the complex. The reaction is NOT light-				
		dependent.				

Do Practice : Reviewing the chapter pg 112