Cellular Respiration

Learning Objectives:

- Catabolic pathways release energy by oxidizing organic foods.
- Glycolysis harvests chemical energy by oxidizing glucose to pyruvate.
- The citric acid cycle completes the energy-yielding oxidation of organic molecules.
- During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis.
- Fermentation enables some cells to produce ATP without the use of oxygen.
- Glycolysis and the citric acid cycle connect to many other metabolic pathways.

Major Terms:		
Aerobic	Citric acid cycle	Fermentation
Alcoholic fermentation	Cristae	Glycolysis
Anaerobic	Electron transport	Lactic acid fermentation

Catabolic system Matrix

Cellular respiration Facultative anaerobes Mitochondrion

CI	енно	SHOSIS FAD	NAD					
Read	: Cha	apter 8						
<i>Lectu</i> Cellu I.	lar Re	espiration rerview						
	A.	is the j	y glucose is	and the				
		potential energy released in the breaking of chemical bonds is stored as						
	B.	Cellular respiration may be	(utilizing) and takes pl	ace in the			
		mitochondria, or it may be	(Oxygen) and inclu	des glycolysis and			
		fermentation. The anaerobic portions o	f cellular respiration as	re				
	C.	Cellular respiration is a	and	pathv	vay and is the			
		combination of glycolysis, the Kreb's c	ycle and the Electron	Transport Chain.				
	D.	ATP production is fueled by the		_H ⁺ pump. The H ⁺ come	from and			
		which is produced in the Kreb's Cycle						
II.	F.	The NET ATP yield from 1 glucose mo Anaerobic glycolysis and fermentation ycolysis	elecule entering the aer are inefficient — yield	obic pathway is per o	eycle. (2+2+32).			
	A.							
	B.	Rearranges the bonds inseries of steps.	(6C) is broken do	wn into	(3C) through a			
	C.	are used to start the reaction.						
	D.	are produced.						
	E.	Net gain is						
	F.	are also produce	d.					
	Cit	tric Acid Cycle ()						
	A.	Pyruvate goes into the mitochondrial	·					
	В.	Through many steps, each catalized by net results are:	an enzyme, the	are	e broken down and the			

Oxidative

pyruvate

phosphorylation

IV.	C. Th	e Electron Trans	port Chain (Co	oA) is needed to	start the reaction	
		In the				
	B.		and	_drop off their h	igh energy electrons which pa	ss through a series of electron
		accptors.				
	C.	The energy driv	ves the synthesis o	f ATP in		
	D.		accepts the e	lectrons. It comb	oines with H ⁺ to form	_·
	E.	ETC does not r	nake ATP. It sets	up the H ⁺ differe	ential that	uses to make ATP
V.	Fei	rmentation Anac	occurs without make erobic respiration on receptor in Aeo		s an increase in	
	B.	Fermentation 1	regenerates	and allo	ws Glycolysis to occur withou	at O_2 .
	C.	Get		_		
	D.	 Alcoholi 	c Fermentation		Each adds no m	
		a.	Pyruvate is conve	erted to	and	
						
			Comercial uses:	, su anaerobic mecha	uch as yeast, are organisms th nisms.	at can synthesize ATP by
			i.			
			ii.			
			cid Fermentation Pyruvate is reduc	ed by NADH to	form	-
		b.		is released		
		c.	Occurs in our		<u> </u>	
		d.	Comercial Uses:			
			i.			
			ii.			
VI.	Gly	ycolysis and the	citric acid cycle co	onnect to many of	ther metabolic pathways.	
	A.					
	B.					
VII.	Ov	erall Reaction:				

Do Practice : Reviewing the Chapter pg 146